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A B S T R A C T

An effective deep learning model is recommended for detecting glaucoma. Here, the detection process contains 
three phases: image collection, segmentation, and detection. At first, the required images are collected from 
benchmark sources. Further, the collected images undergo optic cup and disc segmentation. Here, the seg
mentation is performed by Trans-MobileUnet with Novel Loss function (TMUnet-NL). The segmented image with 
minimal loss is given as input to the Attention-based Dilated Hybrid Network (ADHNet) for detection. It is a 
powerful solution for eye disease classification by combining the strengths of Dilated and attention-based VGG16 
and DTCN models. In this ADHNet, the features from cup, disc, and raw images are extracted by Visual Geometry 
Group (VGG16) network. The features from the cup, disc, and whole images are fused and it is given to the Deep 
Temporal Convolution Network (DTCN) for Glaucoma detection. While compared with classical techniques, the 
recommended method shows an accuracy rate of 94%. In earlier stage, the accurate treatment of the eye disease 
can take some precautions from the sight loss. The significance of eye disease primarily lies in early detection to 
enhance the treatment outcomes and offer more reliable solutions in eye health management. By adopting the 
deep learning model, the segmentation and classification of eye diseases have the ability to make a better 
decision-making process from the clinical experts. Regular eye examination is conducted by clinical experts to 
improve eyesight to enhance the quality of day-to-day life.

1. Introduction

Glaucoma stands as a prominent cause of irreversible blindness 
globally; damage to the retinal ganglion cells as the underlying cause of 
permanent vision loss [1]. This eye condition manifests as optic neu
ropathy, primarily impacting the retinal structure, particularly within 
the Optic Nerve Head (ONH) region. Among its variations, Open-Angle 
Glaucoma (OAG) emerges as the most prevalent form [2]. OAG develops 
gradually, characterized by the gradual blockage of the drainage system. 
This obstruction results in the enlargement of the optic cup area with 
elevated intraocular pressure. In contrast, Angle-Closure Glaucoma 
(ACG) manifests as another subtype, stemming from blockages in the 

drainage canals. This variant leads to sudden and rapid surge in intra
ocular pressure. Glaucoma has been recognized by the World Health 
Organization (WHO) as the second most prevalent cause of vision 
impairment and blindness worldwide. Although glaucoma can affect 
individuals of any age, it becomes more prevalent among the elderly 
population. Notably, among those who aged 60 and above, glaucoma 
ranks as a primary contributor to blindness [3]. The gradual progression 
of the disease often means that individuals remain unaware of dimin
ishing vision until the condition has reached an advanced stage [4].

The realm of glaucoma diagnosis is experiencing a shift towards 
employing medical image analysis techniques, supplanting more tradi
tional testing methodologies. In these instances, a multitude of aspects 

* Corresponding author: Department of ECE, Santhiram Engineering College, Nandyal, Andhra Pradesh-518501, India (Y. M. Rao).
E-mail addresses: venki.challa@gmail.com (C. Venkataiah), chennakesavuluece@rgmcet.edu.in (M. Chennakesavulu), arjunyamarthy@gmail.com

(Y. Mallikarjuna Rao), janardhan.bitra@gmail.com (B. Janardhana Rao), ramesh@gmail.com (G. Ramesh), jspd1810@gmail.com (J. Sofia Priya Dharshini), 
jayachalla9@gmail.com (M. Jayamma). 

Contents lists available at ScienceDirect

Biomedical Signal Processing and Control

journal homepage: www.elsevier.com/locate/bspc

https://doi.org/10.1016/j.bspc.2025.107565
Received 3 July 2024; Received in revised form 1 January 2025; Accepted 19 January 2025  

Biomedical Signal Processing and Control 105 (2025) 107565 

1746-8094/© 2025 Elsevier Ltd. All rights are reserved, including those for text and data mining, AI training, and similar technologies. 

mailto:venki.challa@gmail.com
mailto:chennakesavuluece@rgmcet.edu.in
mailto:arjunyamarthy@gmail.com
mailto:janardhan.bitra@gmail.com
mailto:ramesh@gmail.com
mailto:jspd1810@gmail.com
mailto:jayachalla9@gmail.com
www.sciencedirect.com/science/journal/17468094
https://www.elsevier.com/locate/bspc
https://doi.org/10.1016/j.bspc.2025.107565
https://doi.org/10.1016/j.bspc.2025.107565
http://crossmark.crossref.org/dialog/?doi=10.1016/j.bspc.2025.107565&domain=pdf


within the retinal structure necessitate scrutiny, including the ONH, the 
cup, atrophy, and the layer of retinal nerve fiber. Within fundus images, 
the ONH emerges as a prominent and circular region, housing a smaller 
inner area known as the cup. Encircling the ONH, atrophy presents as a 
crescent-shaped zone [5]. The retinal nerve fiber layer, marked by its 
white striated patterns, lies exterior to the ONH. To decipher the 
requisite features for glaucoma diagnosis through computer vision, two 
primary techniques find application: segmentation and feature extrac
tion [6]. Numerous established methods involve localization and seg
mentation techniques, including active contours and thresholding. 
Inclusive of these, other methodologies like fuzzy c-means have been 
developed [7]. These techniques often encounter challenges in accu
rately classifying the ONH region. Consequently, to address such limi
tations, morphological operations are typically implemented. 
Concurrently, various strategies for extracting textural features from the 
ONH have emerged with its significance in glaucoma detection [8].

A multitude of studies have showcased the capacity of image pro
cessing algorithms to autonomously detect hemorrhages, micro
aneurysms, cotton wool spots, and hard exudates [9]. Yet, the task of 
identifying neovascularization remains relatively nascent. The intricacy 
of distinguishing between regular blood vessels and newly formed ves
sels impedes progress, further compounded by the scarcity of labeled 
neovascularization images available for research. Angiography-based 
techniques have the potential for comprehensive retinal imaging, 
albeit at the cost of invasiveness, rendering them less suitable for early- 
stage or routine diagnoses [10]. Consequently, a deep learning approach 
for neovascularization detection has gained traction, with transfer 
learning serving as a foundation. Commonly, a hybrid network 
combining ResNet18 and GoogLeNet is favored [11]. The efficacy of this 
combined network is measured against its constituent pre-trained net
works, including GoogleLeNet, AlexNet, ResNet50, and ResNet18 [12]. 
Moreover, the assessment of transfer learning outcomes gauges the ef
ficiency in neovascularization detection. Notably, findings suggest that 
the network featuring the ResNet18 and GoogLeNet fusion excels in 
detecting neovascularization, surpassing the performance of other pre- 
trained networks through transfer learning [13].

1.1. Research questions of the study

The following research questions of eye disease segmentation and 
classification are further illustrated below.

RQ1. Is the effective classification done in this research work? What 
techniques have been adopted?

RQ2. How can we adopt a better segmentation framework for eye 
disease with sufficient training data?

RQ3. How the accuracy gets improved by the developed model for 
eye disease segmentation and classification model?

The advanced glaucoma detection model contributed significant 
importance mentioned below: 

• To develop a novel deep learning model that detects the eye disorder 
even before any noticeable symptoms become visible to the naked 
eye. This system used advanced models to analyze images of the eye 
and identify patterns associated with various diseases, allowing for 
early detection and treatment. By catching eye disorders in early 
stages, patients can receive prompt medical intervention and prevent 
further damage to their vision. Ultimately, this classification system 
aims to improve patient outcomes and reduce the prevalence of 
vision loss due to undiagnosed eye conditions.

• To design a TMUnet-NL to perform accurate segmentation of optic 
cup and disc. Here, the transformer layer is included to provide a 
better vector representation. This innovative approach combines 
advanced technology with medical expertise to create a powerful 
tool for diagnosing eye conditions. The use of a transformer layer in 
the network enhances the accuracy of the segmentation process, 
allowing for precise identification of the optic cup and disc. By 

accurately detecting and classifying eye disorders, medical pro
fessionals can intervene early and effectively improves patient care 
and minimizes the vision loss on individuals and society as a whole.

• To design the ADHNet for eye disease classification, by using the 
combination of feature extraction capabilities of VGG16 with the 
classification expertise of DTCN, ADHNet effectively leverages the 
strengths of both architectures to achieve accurate and reliable 
predictions in the realm of eye disease classification from medical 
images. By incorporating attention mechanisms and dilated convo
lutions into the network, ADHNet can focus on important regions of 
the input image while capturing contextual information at different 
scales. This results in improved performance in distinguishing be
tween different types of eye diseases and making more precise 
predictions.

• To assess and quantify the performance improvement achieved by 
the developed deep learning model in comparison to traditional 
techniques. This could involve diverse measures as sensitivity, 
specificity, and overall accuracy. This quantitative analysis can 
provide significant outcomes into the potential benefits of incorpo
rating deep learning technology into the field of ophthalmology.

The section labels for the following content are suitable. Section 2
delves into the research examination of various eye disease classification 
methods. An intelligent framework of eye disease classification using an 
attention-based hybrid technique is covered in Section 3. Section IV 
provides optic cup and disc segmentation using transformer-aided 
MobileUnet and its novel loss function. Section V describes the 
attention-based dilated hybrid network for classifying eye disease. The 
execution and results of the empirical analysis are elaborated in Section 
VI, while the outcomes of the intended task are outlined in Section VII.

2. Existing works

2.1. Related works

2.1.1. Research based on deep learning techniques
In 2020, Masot et al. [14] have implemented a diagnostic instrument 

designed to aid in the identification of glaucoma using fundus images of 
the eye. Initial subsystem has employed a blend of segmentation and 
machine learning techniques to identify optic cup and disc. This 
component was then merged, and their physical and positional attri
butes were extracted. Next, the transfer learning methods were utilized 
on a pre-trained Convolutional Neural Network (CNN). This second 
subsystem focused on detecting glaucoma by comprehensively 
analyzing the entire fundus image of the eye. The outcome from both 
subsystems was synergistically amalgamated to effectively identify in
stances of glaucoma and enhance the overall detection process.

In 2022, Shyamalee et al. [15] have developed the CNN model to 
classify the glaucoma subjects using the fundus image. The comparative 
analysis has been suggested with different configurations with CNN 
architectures that have been validated using the ACRIMA fundus dataset 
to achieve maximum accuracy. In 2022, Islam et al. [16] have developed 
an innovative approach to automatically classify glaucoma. The process 
began with the creation of a novel, proprietary dataset consisting of 634 
color fundus images. The consideration of deep learning models such as 
MobileNet, EfficientNet, DenseNet, and GoogLeNet were employed to 
discern the presence of glaucoma in fundus images. In order to enhance 
accuracy, a distinct dataset was generated by employing a U-net tech
nique to meticulously segment the blood vessels from retinal fundus 
images. However, the high resolution images were utilized in the UNet 
model.

In 2021, Kaushik et al. [17] have initiated an innovative approach 
known as the stacked generalization of CNN. This approach entailed 
integrating the weights of three distinct custom CNN models into a 
single meta-learner classifier. This meta-learner harnessed the optimal 
weights from the sub-neural networks, resulting in robust prediction 
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outcomes and enhanced evaluation metrics. After thorough evaluation, 
the proposed stacked model showcased enhanced performance in the 
image processing schema and the stacked deep learning technique led to 
significant enhancements in diagnostic accuracy and reliability. In 2023, 
Shamsan et al. [18] have employed hybrid approaches that combine 
processes such as feature extraction and unification for classifying a 
dataset on eye diseases. Three approaches were taken: first, after 
decreasing high-dimensional and recurrent features employing Principal 
Component Analysis (PCA), an Artificial Neural Network (ANN) with 
MobileNet and DenseNet121 techniques independently was employed; 
second, fused characteristics from both algorithms were employed 
before and following reducing characteristics; and third combined with 
handmade characteristics. AUC of 99.23 %, precision, precision, speci
ficity, and sensitivity values of 98.45 %, 98.45 %, and 98.75 % were all 
attained by the ANN.

In 2023, Topaloglu and Ismail [19] have developed a new technique 
for diabetic retinopathy disease utilizing deep learning-based Convolu
tional Artificial Neural Networks (CANN). The proposed method was 
effective, which has resized accessible data with total amount of pixels 
before generating an average information pool. The mathematical 
framework combined every data by the total amount of components and 
epoch-time eight tendons. The case study employed both the VGG19 
image classification approach and an algorithm. The simulation ob
tained 87 % train precision, 88 % test accuracy, 93 % precision, and 83 
% recall.

In 2022, Tang et al. [20] have introduced a neovascularization 
detection method utilizing transfer learning. The approach involved 
leveraging the capabilities of four pre-trained CNN models: GoogLeNet, 
AlexNet, ResNet50, and ResNet18. Furthermore, an enhanced network 
was introduced by combining GoogLeNet and ResNet18 architectures. 
Through rigorous examination of 1174 retinal image patches, the pro
posed network demonstrated remarkable effectiveness.

In 2017, Ting et al. [21] have implemented a method to train and 
validate a Deep Learning System (DLS) designed to identify cases of 
referable DR, vision-threatening diabetic retinopathy, and associated 
eye conditions. The training and validation process utilized retinal im
ages in an ongoing nationwide DR screening initiative in Singapore. The 
method’s efficacy was further confirmed through external validation 
across ten additional multiethnic datasets from various countries. This 
comprehensive methodology not only demonstrated the effectiveness of 
the DLS in detecting DR across diverse datasets but also offered valuable 
insights into its potential applications within different screening models.

2.1.2. Existing pre-processing techniques for eye disease classification
In 2021, Aruandzeb et al. [22] have suggested Modified Particle 

Swarm Optimization (MPSO) to fine-tune the parameters of Contrast 
Limited Adaptive Histogram Equalization (CLAHE). The primary 
emphasis was placed for optimizing contextual regions and clip limit 
within the CLAHE process. By employing this approach, the MPSO- 
optimized CLAHE method demonstrated enhanced image quality, as 
evidenced by standard evaluation metrics. Notably, these improvements 
were most pronounced when utilized in conjunction with deep learning 
models. The outcomes obtained through this strategy highlighted a 
substantial and beneficial influence in medical imaging tasks of this 
nature. In 2020, Zhang et al. [23] have developed a groundbreaking 
automated method known as the Hyper Parameter Tuning Inception-v4 
(HPTI-v4) model, meticulously crafted for the precise detection and 
classification of Diabetic Retinopathy (DR) using color fundus images. 
Pre-processing model has the ability to improve image contrast by 
adopting the CLAHE model. Afterward, the preprocessed images un
dergo segmentation via a histogram algorithm. Following segmentation, 
the HPTI-v4 model comes into action, extracting crucial features. These 
extracted features were fed into a Multilayer Perceptron (MLP) for 
classification purposes.

2.1.3. Machine learning technique for eye disease classification
In 2018, Poplin et al. [24] have developed an innovative machine- 

learning technique, capable of autonomously extracting novel insights 
from images. By utilizing models trained on a comprehensive dataset 
comprising 284,335 patients, the method was subsequently validated on 
two separate datasets, one containing 12,026 patients and the other 999 
patients, respectively. This approach unveiled previously undetected 
cardiovascular risk factors present within retinal images. The models put 
forth in this study harnessed distinct anatomical features within retinal 
images to generate each prediction. These features included elements 
like the optic disc or blood vessels, offering promising avenues for future 
exploration and research. In essence, this groundbreaking technique 
showcased the potential of machine learning to uncover hidden car
diovascular insights from retinal fundus images, expanding the scope of 
knowledge attainable through this visual medical data.

2.1.4. Clinical in-sights of eye disease classification
In 2024, Vyas et al. [25] have suggested a popular clinical test for 

diagnosing Dry Eye Disease (DED), which was the Tear Film Breakup 
Time (TFBT) test, yet it was labor-intensive, personal, and time- 
consuming. The extent of DED could not be determined by current 
computer-assisted detection approaches. This research proposed a 
unique TFBT-based DED detection method that used TFBT to reliably 
identify the severity of DED, detect whether it was present or absent 
from TFBT footage, and classify it as normal, mild, or extreme. The 
method has 83 % classification accuracy, a 90 % agreement with 
ophthalmology views, and 90 % detection accuracy for DED in TFBT 
movie intensity grading. In 2022, Shyamalee et al. [26] have imple
mented a strategy of a combination model to segment and classify the 
retinal fundus image in glaucoma detection. To enhance the image 
quality, diverse pre-processing techniques were adopted to achieve ac
curacy. Also, the data augmentation technique has been eradicated by 
considering the data augmentation techniques. The RIM-ONE dataset 
was taken for the implementation to achieve better accuracy rate of the 
model.

2.1.5. UNet-based Techniques for segmenting fundus images
In 2022, Shyamalee et al. [27] have implemented a novel attention 

U-Net model along with three CNN architectures like Inception-v3, Vi
sual Geometry Group 19 (VGG19), and Residual Neural Network 50 
(ResNet50) for accurately segmenting the fundus image. To reduce 
overfitting issues, the data augmentation technique has been adopted to 
achieve high accuracy. Overall, the empirical outcome of the model has 
attained 99.53 % using RIM-ONE dataset.

2.1.6. Inception techniques for image segmentation
In 2023, Faizal et al. [28] have suggested a method for automating 

the identification of cataract illness focused on normal visual wave
length images and medically obtained anterior segmental images. The 
technique was optimized using Inception-v3 and adaptive thresholding 
to provide immediate and precise outcomes. Images in visible wave
lengths were used to train the model, while anterior segment eye pic
tures collected through medical means were used to validate it. The 
model design and suggested image pre-processing method provide a 
classification precision of almost 95 %. Nuclear glaucoma cortical 
glaucoma or a hybrid comprising both kinds of cataracts could all be 
identified by the technique.

2.2. Research Gaps and challenges

The vision function is carried out by the eye and it is considered as 
the most important organ of the human. Vision loss has occurred to be 
result of several eye diseases. Several techniques have been developed 
for eye disease classification. However, they are not suitable for iden
tifying glaucoma disease, or diabetic retinopathy disease. Moreover, the 
symptoms of the eye disease are not identified by the existing 
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techniques. Table 1 presents the features and challenges associated with 
the current eye disease classification methods. 

• Existing eye disease classification models have limited generaliza
tion capability, where models struggle to perform well on unseen 
data or different populations. This gap is effectively addressed by 
leveraging deep learning techniques. Deep learning models shows 
great impact in learning complex patterns and features from data, 
enabling them to generalize better to new and diverse datasets.

• Existing eye disease classification models have the issue of inade
quate localization of abnormalities within eye images. This gap can 
be effectively addressed by enhancing the segmentation process. This 
process can accurately identify and segment specific abnormalities in 
the eye images, leading to more precise disease diagnosis and 
classification.

• Existing eye disease classification models lack model fusion, where 
models do not effectively combine multiple modalities or architec
tures to leverage complementary information for more accurate 
disease classification. On the other hand, the research work adopts 
the hybrid models that integrate features from different sources. 
Hybrid models can effectively bridge the gap in existing models by 
leveraging diverse information sources to improve overall perfor
mance of eye disease classification systems.

• Existing eye disease classification models has the ability to classify 
certain rare or complex eye conditions due to insufficient informa
tion. This gap is addressed by incorporating dilation in the classifi
cation models. By utilizing dilation in image preprocessing, 
classification models can potentially improve their performance in 
distinguishing subtle differences in eye diseases, leading to more 
precise diagnoses and treatment recommendations.

• Existing eye disease classification models provide a limited focus on 
capturing important relationships and features within the eye im
ages. This gap can be effectively solved by considering attention 
mechanisms into the models. Incorporating attention mechanisms 
helps the model to process dynamically focus on relevant parts of the 
input data, emphasizing important features while suppressing irrel
evant ones.

To tackle the existing challenges, in this work, we developed a novel 
eye disease classification with advanced model.

3. An intelligent framework of eye disease classification by 
attention-based hybrid learning model

3.1. Collection of retinal images

The eye disease dataset is a reputable and standardized data 

Table 1 
Strength and weakness of traditional eye disease classification models.

Author 
[citation]

Methodology Strength Weakness Advantages of the developed model

Islam et al. 
[16]

EfficientNet • It is used for the glaucoma classification 
process.

• It is used to dissect the blood vessels from 
the retinal images.

• It requires more amounts of 
computation possessions so it 
takes more cost for the 
classification process.

• It is only suitable for the fixed-size 
input.

• The effective classification performance is done by 
attaining the essential features to enhance the 
performance. While focusing better data quality and 
addressing data imbalance issues, the developed 
model could effectively resolve this drawback to 
enhance classification performance.

Masot et al. 
[14]

pre-trained 
CNN

• It detects glaucoma in the eye fund images 
so the damage in the optic nerves is highly 
prevented.

• It is used to extract the physical and the 
positional features from the images.

• It is only suitable for the particular 
format of images.

• It gives poor reliability and 
sensitivity.

• By implementing the novel deep learning model, the 
sensitivity of the model increases to strengthen the 
reliability of the model in the eye disease 
classification model.

Zhang et al. 
[23]

HPTI-v4, MLP • It is employed to extract features from 
segmented images.

• It is utilized for the comprehensive 
classification of diseases.

• It does not automatically classify 
the diabetic retinopathy images.

• It does not identify the rise in the 
glucose level of the human body.

• It is efficient to classify the eye disease by 
introducing the novel deep learning model as 
ADHNet.

Tang et al. 
[20]

AlexNet, CNN • It is used to analyze the patches of the 
retinal images.

• It is used for neovascularization detection 
with higher accuracy.

• It is not fit for retrieving the 
complex features from the images.

• It is not a deep model it performs 
slowly as compared to the other 
techniques.

• The adoption of the deep learning model facilitates 
to boost-up the training process compared to other 
neural networks. Also, the convergence of the model 
shows higher performance.

Kaushik et al. 
[17]

CNN • It is used for the luminosity normalization 
process to get more accurate results.

• It gives accurate prediction results by 
combining the weight values so it solves 
the non ideal illumination issues in the 
images.

• It gives high generalization errors 
during the prediction process.

• It is not suitable for the diverse 
quantities of images.

• The generalization error of the model is reduced by 
validating the data with large data to enhance the 
performance of the eye disease classification model. 
In order to express better quality outcomes, the 
images are collected from standard datasets to 
enrich the performance in the developed model.

Aruandzeb 
et al. [22]

CLAHE • It optimizes the clip limit and the 
contextual regions of the images to find the 
eye disease effectively.

• It is used to augment the green strait of the 
retinal fund images.

• It is not suitable to neglect the 
noise amplification so the results 
are affected by this process.

• To eradicate noise in the images, the research work 
adopts an advanced segmentation technique in order 
to improve the image quality. Within the specified 
region, the noise can be removed using the 
segmentation technique.

Ting et al. 
[21]

DLS • It is used to identify the Diabetic 
Retinopathy and other eye-related disease.

• It attains high specificity and specificity 
during the prediction process.

• It does not give accurate vision 
outcomes.

• The developed model focuses on identifying the 
complex patterns to enhance the accuracy in 
classification performance. This accurate analysis 
helps to significantly improve the treatment and 
vision loss.

Poplin et al. 
[24]

Neural 
network

• It is used for identifying the cardiovascular 
risk identification process.

• It is used for analyzing the features and 
color of the images to get an effective 
outcome.

• It is only suitable for developing 
the attention heat maps so it gives 
poor results.

• By employing standard deep learning techniques in 
this research work, the model’s generalizability 
could be performed within the unseen data which 
helps to enhance the result outcomes in the 
developed model. Based on this context, the 
clinicians provide appropriate treatment for the 
individuals.
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repository. A concise overview of the collected dataset is provided 
below.

Dataset 1 (Glaucoma Detection dataset): The information 
collected from the link is given as “https://www.kaggle. 
com/datasets/sshikamaru/glaucoma-detection?select = glaucoma.csv 
access date: 04–08-2023”. These datasets commonly encompass a 
diverse assortment of images or OCT scans depicting various aspects of 
the eye, encompassing both typical and glaucomatous conditions. These 
datasets often come with accompanying annotations or labels that 
provide information regarding the existence or degree of glaucoma 
within the depicted cases. The dataset comprises several classes like 
ACRIMA, Fundus, and ORIGA. For each class, the total count of images 
includes 705, 630, and 650. The image size is taken as 512 × 512. From 
the total data, the training and testing data is considered as 75 % and 25 
%.

From the above-mentioned dataset, the collected images are repre
sented as Iminp

e , here e = 1, 2,⋯, E , the quantity of gathered images is 
represented as E. Fig. 1 shows the sample images for the eye disease 
classification system and the OD-OC ratio for each image is given in 
Table 2.

3.2. Trainable parameters

The description of the parameters employed in the developed model 
is given in Table 3.

3.3. Proposed methodology of eye disease classification

Recently, the emergence of artificial intelligence and medical im
aging has ushered in a new era of healthcare, particularly in the field of 
ophthalmology. Automated systems for classifying eye diseases based on 
medical images have garnered significant attention for their potential to 

revolutionize early detection and diagnosis. These systems utilize 
advanced algorithms to analyze images of the eye, ranging from retinal 
scans to OCT data, to identify various ocular conditions. This techno
logical innovation presents a host of advantages that promise to enhance 
patient care and streamline medical processes. However, alongside these 
benefits, there are also limitations like automated systems cannot 
consider broader patient context, such as medical history and symptoms, 
which play a crucial role in accurate diagnosis. This limitation could 
potentially lead to misdiagnose or overlooking important factors. 
Automated systems cannot often consider broader patient context, such 
as medical history and symptoms, which play a crucial role in accurate 
diagnosis. The proposed method is used to address these mistakes and 
helped to improve the classification method. Fig. 2 depicts the view of a 
novel deep learning-based eye disease classification model.

Our primary goal is to detect Glaucoma even before any noticeable 
symptoms as visible to the naked eye, ultimately enhancing early 
intervention and patient outcomes. The recommended system consists of 
several phases for diagnosing Glaucoma and classifying eye diseases 
using medical images. In this initial phase, the system gathers relevant 
images from online sources. The optic cup and disc are located at the 
back of the eye, and they are the entry points for the optic nerve. In 
Glaucoma, damage to these structures is often one of the earliest signs of 
the disease. Accurate segmentation is a crucial step in diagnosing 
Glaucoma. The system employs the TMUnet model for image segmen
tation tasks. It is to be enhanced with a novel loss function, likely 
tailored to enhance accuracy of the segmentation results. With the 
extracted features, the system proceeds to classify eye diseases. The 
designed model, called ADHNet, appears to be a fusion of VGG16 and 
DTCN, combining the feature extraction capabilities of VGG16 with the 
classification expertise of DTCN. The ADHNet model leverages the ad
vantages of VGG16 and DTCN to achieve accurate and reliable pre
dictions in the realm of eye disease classification from medical images. 
It’s capable of classifying the segmented images into various eye disease 
categories, including Glaucoma.

4. Optic cup and disc segmentation using transformer-aided 
MobileUnet and its novel loss function

4.1. Basic model of MobileUnet

MobileUNet [29] is a CNN architecture specifically crafted for se
mantic segmentation tasks, with a particular focus on applications 
within the realm of computer vision. The deep explanation of Mobi
leUnet is elaborated below.

Mobilenet: MobileNet [30] is designed to create lightweight and 
efficient CNN suitable for mobile and embedded devices.

Depthwise Convolution: In a depthwise convolution, each input 
channel is convolved separately with a set of corresponding filters. This 
means that if an input has C channels, there will be C individual filters, 
each operating on a single channel.

Pointwise Convolution: Pointwise convolution, also known as 1x1 
convolutions, involves applying a 1x1 filter to each of the channels 
independently. The primary purpose of this step is to linearly combine 
the outputs of the depthwise convolutions. The number of 1x1 filters 

Fig. 1. Sample images for eye disease classification system.

Table 2 
OD-OC ratio for each image.

Images description Accuracy (%)

Image-1 91.03
Image-2 92.93
Image-3 92.02
Image-4 93.50
Image-5 92.83

Table 3 
Description of parameters and network complexity.

Parameters Range

Activation Relu
Input shape (224, 224, 3)
Kernel size (3, 3)
Loss Categorical_crossentropy
Optimizer Adam
Complexity of the 

network
O = MaxItera + NPOP + Chlength + 1 
Here, the term MaxItera,NPOP and Chlength are the maximum 
iteration, number of population, and chromosome length.
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used here to control with the final number of output channels.
The depthwise convolution step produces multiple intermediate 

feature maps, and the pointwise convolution combines these interme
diate maps by linearly combining them through the 1x1 convolution 
operation.

This design philosophy allows MobileNet to significantly reduce the 
number of computations and parameters, making it well-suited for 
resource-constrained environments without sacrificing too much in 
terms of performance. It’s worth noting that while MobileNet is effective 
in many scenarios, there might be trade-offs in terms of accuracy 
compared to larger and more complex models.

Unet: The U-Net [31] architecture is a popular CNN architecture 
designed for semantic segmentation tasks. The approach involves 
reshaping feature maps to match the desired image dimensions. Ach
ieved by employing convolutional and deconvolutional techniques, this 

process revitalizes the feature stage. The architectural layout in
corporates two main ways: the developing path and the expansive path, 
in which it is composed of three layers of blocks. Within the developing 
path, every layer is succeeded by a 2x2 max pooling operation. The 
convolutional process entails the concatenation of two upsampling 
layers with two merging layers. The final output layer, responsible for 
generating pixel-by-pixel value scores, adopts a 1x1 convolutional layer 
activated by the sigmoid function.

The block layers are configured with filter counts of 112, 224, and 
448, respectively. On the expansive path, the filter counts are adjusted to 
224, 122, and 122. Notably, the architecture draws inspiration from the 
original UNet architecture, while integrating novel CNN dropout tech
niques exclusively within the expansive path. The proposed system re
places the traditional convolutional layers in the UNet architecture with 
MobileNet-based layers to make the network more efficient while still 

Fig. 2. A view of novel deep learning-based eye disease classification model.
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maintaining the semantic segmentation capabilities of UNet.

4.2. Tmunet for segmentation

TMUnet architecture combines the efficiency of MobileNet, the 
contextual understanding of transformers, and the segmentation capa
bilities of U-Net to create a powerful model for accurate and contextu
ally informed pixel-wise classification in images. The collected image 
Iminp

e is the input to MobileUNet, which is given in section IV.A, and the 
Transformer is explained below.

The key concept of the transformer [32] architecture is self- 
attention, which enables capturing long-range dependencies between 
elements in a sequence. In the context of image processing, transformers 
can be used to process and understand images by treating them as se
quences of patches or tokens.

The Transformers model is designed to tackle supervised learning 
tasks. Tokenization is a crucial technique employed in this context, 
involving the conversion of input data into a set of 2D patches, which are 
essentially segments the image that have been partitioned. Each patch’s 
size is represented by the symbol p, and P signifies the total count of 
patches in the image. The following step involves patch embedding. In 
this process, each vectorized patch y is transformed using a learnable 
linear projection that maps it to a D-dimensional embedding space. Eq. 
(1) captures the positional information associated with this operation.. 

Em(y) = Wpatch.y+ Epos (1) 

Here the term Em(y) stands for the embedding of the patch y, the 
variable Wpatch represents the learnable weight matrix that performs the 
projection of the patch. Also Epos denotes the positional embedding 
associated with the patch, incorporating information about its location.

The Transformers decoder comprise of Multihead Self-Attention 
(MSA) and Multi-Layer Perceptron (MLP). This configuration leads to 
the formulation of Eq. (2) and Eq. (3), which describes the output of a 

single layer.
Eq. (2) captures the outcome of a MSA layer operation, where MSAin 

represents the MSA process applied to the input. The symbol ⊕ denotes 
the concatenation operation. 

MSAout = MSAin ⊕ Lin (2) 

Eq. (3) formulates the result of the MLP operation within a layer. The 
symbol ⊗ represents element-wise multiplication. 

MLAout = MLP(MSAout) ⊗ MSAout (3) 

These equations encapsulate the transformation and information 
flow within a single layer of the Transformer decoder, involving MSA 
and MLP components. Finally, obtained the cup and disc segmented 
image, which is represented as Cupseg

e and Disseg
e . Eye disease segmenta

tion using TMUnet has numerous advantages to provide accurate 
detection and segmentation of eye diseases. This advanced algorithm 
combines the power of transfer learning and mobile-friendly architec
ture to enhance the segmentation performance of various eye condi
tions, providing significant benefits in clinical settings. One key 
advantage of TMUnet is its high accuracy in segmenting eye diseases 
from medical images. The algorithm leverages transfer learning, which 
allows it to adapt pre-trained models to new datasets with limited an
notated data. This capability significantly improves the segmentation 
accuracy of eye diseases, such as diabetic retinopathy or glaucoma, by 
learning from diverse and extensive datasets. As a result, healthcare 
professionals can rely on TMUnet to provide precise and reliable seg
mentation results, aiding in early diagnosis and treatment planning. 
Moreover, TMUnet offers real-time processing capabilities, making it 
suitable for applications requiring quick and efficient analysis of eye 
images. The mobile-friendly architecture of TMUnet ensures that the 
algorithm can run efficiently on resource-constrained devices, such as 
smartphones or tablets. This advantage enables healthcare providers to 
perform on-the-spot analysis of eye diseases, facilitating timely decision- 
making and patient care. The ability to process images rapidly without 
compromising accuracy is a significant benefit of TMUnet in clinical 
practice. Additionally, TMUnet enhances the scalability and accessi
bility of eye disease segmentation in healthcare systems. The algo
rithm’s efficient architecture allows for seamless integration into 
existing medical imaging systems, enabling healthcare facilities to adopt 
advanced image analysis capabilities without significant infrastructure 
changes. By automating the segmentation of eye diseases, TMUnet 
streamlines the diagnostic process, reduces manual effort, and improves 
the overall efficiency of healthcare services. Fig. 3 depicts the view of 
TMUnet-NL for segmentation.

4.3. Cup and disc segmentation using TMUnet-NL function

TMUnet-NL architecture combines the efficiency of MobileNet, the 
contextual understanding of transformers, and the segmentation capa
bilities of U-Net to create a powerful model for accurate and contextu
ally informed pixel-wise classification in images. Segmentation of 
medical images, such as cup and disc segmentation in retinal images, is a 
critical task in computer vision and healthcare. Utilizing TMUnet and 
designing a novel loss function can indeed helped to improve the ac
curacy of segmentation tasks. The choice of loss function is critical for 
training a segmentation model.

Loss functions play a critical role in assessing the performance by 
quantifying how effectively they capture underlying patterns in the 
data. They enable the models to learn and adapt their parameters in 
order to minimize the loss, ultimately leading to better performance in 
either predicting continuous values in regression or classifying data into 
discrete categories in classification. The Mean Square Error (MSE) of 
residuals is used instead of just taking the Sum of Squares of Residuals to 
make the loss function independent of the number of data points in the 
training set. MSE is often favored over Mean Absolute Error (MAE) in 

Fig. 3. A view of Trans- MobileUnet for segmentation.
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certain contexts due to the ease of calculating derivatives. This prefer
ence arises because calculating derivatives of functions containing ab
solute values can be more challenging, primarily because the absolute 
function is not differentiated at its minimum point. Here the MAE is 
calculated using Eq. (4). 

MAE =

∑m
i=1|xi − xi|

n
(4) 

Mean Bias Error (MBE) provides insights into whether a model ex
hibits a positive bias or a negative bias when making predictions, which 
is mathematically defined in Eq. (5). 

MBE =

∑m
i=1|xi − xi|

n
(5) 

Cup and Disc Segmentation using TMUnet-NL offers significant ad
vantages in the precise analysis and detection of eye diseases, particu
larly those affecting the optic nerve head. This advanced algorithm 
combines the strengths of Trans-MobileUnet with loss function to 
improve the segmentation accuracy of cup and disc regions, providing 
valuable benefits in the field of ophthalmology. One key advantage of 
TMUnet-NL is its enhanced segmentation accuracy for cup and disc re
gions in eye images. By incorporating a novel loss function, the algo
rithm can effectively optimize the segmentation process, ensuring more 

Fig. 4. An architectural representation of VGG16.

Fig. 5. Architectural view of DTCN.
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precise delineation of the optic cup and disc structures. This improved 
accuracy is crucial for monitoring the eye diseases like glaucoma, where 
changes in the cup-to-disc ratio can indicate disease progression. With 
TMUnet-NL, healthcare professionals can rely on more accurate seg
mentation results, leading to better clinical decision-making and patient 
care. Moreover, TMUnet-NL acquires robust generalization capabilities, 
allowing the algorithm to perform well on diverse datasets and across 

different imaging modalities. The novel loss function adapt to variations 
in image quality, lighting conditions, and patient demographics, 
ensuring consistent and reliable segmentation results. This adaptability 
is essential in clinical settings where image quality may vary, and ac
curate segmentation of cup and disc regions is critical for diagnosing and 
monitoring eye diseases. Additionally, TMUnet-NL provides scalability 
and efficiency in cup and disc segmentation tasks, making it suitable for 

Fig. 6. The proposed view of deep learning based ADHNet Model for eye disease classification.
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integration into existing medical imaging systems. The algorithm’s 
mobile-friendly design ensures that it can run efficiently on a range of 
devices, enabling healthcare providers to perform rapid and accurate 
segmentation of optic nerve head structures. By automating the seg
mentation process with TMUnet-NL, healthcare facilities can improve 

workflow efficiency, reduce manual effort, and enhance the overall 
quality of eye disease diagnosis and management.

Fig. 7. Resultant images of eye disease classification system model.

C. Venkataiah et al.                                                                                                                                                                                                                            Biomedical Signal Processing and Control 105 (2025) 107565 

10 



5. Describing the attention-based Dilated hybrid network for 
classifying the eye disease

5.1. VGG16

VGG-16 [33] is conceived to delve into the impact of network depth 
on the efficacy of CNNs in deciphering image recognition challenges. Its 
purpose was to scrutinize the advantages brought by increased depth 
compared to shallower counterparts like AlexNet. Before the advent of 
VGG-16, models like AlexNet had exhibited promise in large-scale image 
classification tasks, yet they possessed a smaller number of layers. Here 
the collected image Iminp

e , the segmented images Cupseg
e and Disseg

e act as 
the input to this phase, VGG-16 was meticulously crafted to be more 
profound, boasting a total of 16 layers, with the explicit goal of ascer
taining whether heightened depth could translate to superior 
performance.

In its architectural construction, VGG-16 adopted a uniform 
approach, consistently employing 3x3 convolutional filters across the 
network. This strategic decision is pivotal in enabling the network to 
grasp intricate and hierarchical features embedded within input images. 
This architectural choice led to an elevated aptitude for feature acqui
sition and amplified representational capacity.

The input to VGG-16 consisted of images with dimensions 224 x 224 
x 3, wherein 224x224 denoted the spatial resolution, and 3 signified the 

RGB color channels. The design incorporated 13 convolutional layers, 
each coupled with a Rectified Linear Unit (ReLU) activation function to 
introduce non-linear transformations. Max-pooling layers ensued after 
sets of convolutional layers, serving the dual purpose of diminishing 
spatial dimensions, thereby enhancing translational invariance, and 
mitigating computational complexity.

Ultimately, the architecture culminated in a fully connected layer 
that typically underwent a softmax activation function, facilitating the 
conversion of network outputs into class probabilities. VGG-16′s ac
complishments spanned an array of image recognition tasks for detect
ing object. Its exceptional achievements underscored the pivotal role of 
depth within CNN architectures and catalyzed the development of more 
intricate models. In totality, VGG-16′s architectural blueprint and the 
insights it furnished and stand as pivotal milestones in shaping subse
quent advancements in the realms of deep learning and CNNs. Finally 
obtained the three features, which are represented as Imf inp

e , Cupfseg
e and 

Disf seg
e . Fig. 4 gives architectural view of VGG16.

5.2. Feature fusion

The central objective of feature fusion is to gather complementary or 
pertinent information from multiple sources, potentially resulting in 
enhanced performance. By integrating information from different fea
tures, can create a more robust and informative representation of the 
underlying data. The obtained three features are multiplied with 
respective constant values and then summed finally obtained the fused 
feature and shown mathematically as Eq. (6)

ff fea
e = 0.3 × Imf inp

e +0.3 × Cupfseg
e +0.4 × Disf seg

e (6) 

From the above equation, the term Imf inp
e , Cupfseg

e and Disf seg
e defines 

the obtained collected image-based feature, cup-based feature, and disc- 
based feature.

5.3. Deep temporal convolution network

The distinctive feature of DTCN [34] is its integration of temporal 
convolutional layers. These layers are adept at capturing sequential 
dependencies and temporal evolutions present in sequences of images. 
The obtained fused feature ff fea

e is the input to this phase, by convolving 
across both spatial and temporal dimensions, DTCN becomes proficient 
in discerning intricate spatiotemporal patterns that would be elusive to 
traditional CNNs. DTCN’s architecture might involve stacking multiple 
temporal convolutional layers, each extracting progressively higher- 
level temporal features. In addition, these layers can be interspersed 
with pooling operations to distill essential information and minimize 
computational overhead. Activation functions like ReLU can introduce 
non-linearity, enabling the network to grasp complex temporal dy
namics. Mathematically, the convolution operation K(l) executed for the 
lth time step in a dilated causal TCN layer can be expressed using the 
following Eq. (7). 

K(l) =
∑s

i=1
w(i).y(l − (b.i)) (7) 

Here, the term s denotes the kernel size of the convolutional layer 
w(i) is the weight of the ith element within the kernel and y(l − (b.i))
corresponds to the input value at the shifted time step accounting for the 
dilation factor b.

The convolutional operation conducted by a dilated DTCN layer, 
pertaining to step l and denoted as M(l) can be expressed using Eq. (8). In 
this equation, the convolution is performed within the range from 
y

l− b.s− 1
2

toy
l+b.s− 1

2
. 

Table 4 
Software and hardware requirements of the developed model of eye disease 
segmentation and classification model.

Software requirements
Software Pycharm

version 3.11 and anaconda v3
Hardware requirements
Machine Windows
ROM 500 GB
Processor i3
Version 11
RAM 8 GB

Libraries

operncv-python
Matplotlib
Keras
tflearn
TensorFlow
NumPy
prettytable

Fig. 8. The examination of the ROC curve for the eye disease classification 
model is conducted across a range of traditional classifiers.
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M(l) =
∑

y
l+b.

s− 1
2

y
l− b.

s− 1
2

w(i − l + s.
s − 1

2
+ 1).y(i) (8) 

Here, the term M(l) represents the output of the convolutional 
operation at the time step l and s is the kernel size of the convolutional 

layer. Also, the term 
∑

ly
l+b.

s− 1
2

ly
l− b.

s− 1
2

w(i − l + s.s− 1
2 +1) signifies the weight 

associated with the ith element in the kernel.
The convolution is performed over a specific range, defined by the 

shifting of indices in the input sequence to account for the dilation and 
kernel size. This captures the essence of how a DTCN layer operates in 
modeling sequence data, finally obtaining the classified outcome, to 
achieve accurate and reliable predictions in the realm of eye disease 
classification from medical images. Fig. 5 shows the architectural view 
of DTCN.

5.4. Description of proposed ADHNet model

Dilated and attention-based VGG16: The Dilated and Attention- 
based VGG16 combine these two enhancements with the original 
VGG16 architecture. This typically involves replacing some of the 
standard convolutional layers with dilated convolutional layers and 
introducing attention mechanisms at specific points in the network. The 
dilated convolutions help capture a broader range of spatial informa
tion, while attention mechanisms enable the network to adaptively focus 
on relevant features. This hybrid architecture is particularly effective for 
tasks that require both a comprehensive understanding of image context 
and the ability to concentrate on specific details.

Dilated and attention-based DTCN: A Dilated and Attention-based 
DTCN integrate both dilated convolutions and attention mechanisms 
into the architecture. Dilated convolutions help the network to capture 
temporal dependencies over extended time horizons, allowing it to 
recognize patterns and trends occurring at different scales. Attention 
mechanisms enable the model to dynamically weigh the importance of 

different time steps, focusing on relevant information and ignoring noise 
or irrelevant data. This combined approach results in a powerful model 
for processing and understanding complex temporal sequences, making 
it well-suited for various applications.

ADHNet is a deep-learning architecture designed specifically for the 
classification of eye diseases in medical images. Also, this process in
volves a combination of deep learning architectures such as VGG16 and 
DTCN, here VGG16 is used for feature extraction and DTCN for classi
fication. By combining the feature extraction capabilities of VGG16 with 
the classification expertise of DTCN, ADHNet effectively leverages the 
strengths of both architectures to achieve accurate and reliable pre
dictions in the realm of eye disease classification from medical images. 
Here the VGG 16 provides the fused feature to the DTCN model, both 
network influences the concept of attention mechanisms and dilated 
convolutions to capture important features in the input images and 
make accurate disease predictions.

Moreover, in the context of eye disease classification, the attention 
mechanism plays a crucial role in streamlining the process. It allows the 
network to focus on specific regions of the input image that are essential 
for detecting eyes. Instead of treating all parts of the image equally, the 
attention mechanism enables the network to prioritize areas that are 
more likely to contain eyes. This selective attention helps in reducing the 
overall complexity of the task by highlighting important details and 
disregarding irrelevant information. By integrating the attention 
mechanism into the process of eye disease classification, the network 
can effectively manage the complexities associated with using multiple 
complex models. The attention mechanism enhances the network’s 
ability to handle intricate tasks by guiding it to concentrate on the most 
relevant features, leading to more precise and efficient eye detection 
outcomes. In practical terms, the attention mechanism works by 
assigning weights to different parts of the input image based on their 
importance for the task at hand. These weights are learned during the 
training process, allowing the network to dynamically adjust its focus as 
needed. By giving more weight to areas that are critical for eye disease 
classification, the attention mechanism helps the network make more 
informed decisions and improve its overall performance.

Fig. 9. The examination of the confusion matrix for the eye disease classification model is conducted across a range of traditional classifiers.
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Eye disease classification using the ADHNet presents several ad
vantages in accurately categorizing and diagnosing eye diseases by 
leveraging a hybrid network that combines Dilated and attention-based 
versions of VGG16 and DTCN models. This innovative approach en
hances the classification performance and efficiency in identifying 
various eye conditions, offering significant benefits in the field of 
ophthalmology. One key advantage of ADHNet is its superior classifi
cation accuracy for eye diseases. By integrating both Dilated and 
attention-based architectures of VGG16 and DTCN models, the hybrid 
network can effectively capture intricate features and patterns in eye 
images, enabling more precise disease classification. This enhanced ac
curacy is crucial for distinguishing between different eye conditions 
such as diabetic retinopathy, macular degeneration, and retinal vascular 
diseases, leading to more targeted and effective treatment strategies. 
Furthermore, ADHNet’s attention mechanism allows the network to 
focus on relevant regions within the input images, thereby improving 
the model’s interpretability and performance. The attention-based 
components in both the VGG16 and DTCN models enable the network 
to selectively highlight important features during the classification 
process, enhancing the overall understanding of the classification de
cisions. This attention mechanism not only boosts the network’s per
formance but also provides valuable insights into the factors influencing 
the classification outcomes, aiding healthcare professionals in making 
informed diagnostic decisions. Moreover, the hybrid nature of ADHNet 
combining dilated and attention-based architectures offers versatility 

and adaptability in handling diverse datasets and different types of eye 
images. The fusion of these advanced models allows for comprehensive 
feature extraction and representation, enabling the network to effec
tively classify a wide range of eye diseases with high accuracy and 
robustness. This flexibility is essential in real-world clinical scenarios 
where the diversity of eye conditions and imaging modalities requires a 
versatile and reliable classification system. Fig. 6 shows the proposed 
view of deep learning-based ADHNet Model for eye disease 
classification.

5.5. Resultant images

The executed eye disease classification model is carried out, and the 
resulting images are gathered and shown in Fig. 7.

6. Results and discussion

6.1. Simulation Setup

The implementation of an eye disease classification system was 
conducted using Python, and subsequent analysis was performed. This 
newly proposed model incorporated a variety of classifiers, including 
LSTM [37], MobileNetV2 [38], RNN [39], DTCN [40], U-Net [31], CNN 
[35], DeepLab3 [36], MobileUNet [29], Artificial Neural Networks [41], 
and Gated Recurrent Unit [42], for the classification task. The hardware 

Fig. 10. Determining the activation function of the given eye disease classification model when assimilated with classical models regarding (a) Accuracy b) F1-Score, 
c) FPR and d) precision.
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and software requirements of the developed model are shown in Table 4.

6.2. Determining ROC validation of the suggested eye disease 
classification model over distinct traditional classifiers

Fig. 8 presents a visual representation of how well the improved eye 
disease classification framework performs when compared to various 
classifiers on traditional datasets using ROC analysis. The analysis of 
ROC is widely performed by plotting the true positives and false posi
tives at different threshold values. This figure is crucial for demon
strating the effectiveness of the proposed framework to understand the 
classification performance. It quantifies to visually assess the differen
tiation of healthy and eye affected regions at different decision points to 
enhance the accuracy outcomes. The curve closer to the top left corners 
shows the model perform better sensitivity outcomes while minimizing 
the false rates. In clinical analysis, the optimal cut off value shows the 
medical experts to provide the accurate treatment for eye disease 
effectively. This shows that the developed model is adept at processing 
large volumes of eye images efficiently, allowing for comprehensive 
analysis and insights, and can personalize treatment plans based on in
dividual patient data and specific disease characteristics, leading to 
more tailored care.

6.3. Determining confusion matrix for the developed eye disease 
classification model

The confusion matrix provides valuable insights into the model’s 
performance, allowing the calculation of various metrics like accuracy, 
precision, recall, F1-score, and more. These metrics help to understand 
how well your classification model is performing and whether it is 
making specific types of errors more frequently than others. In the 
context of confusion matrix analysis, the medical expert helps to classify 
eye disease based on retinal images for enhancing diagnosis accuracy in 
medical sector. The medical expert can identify different patterns in 
confusion matrix analysis to enhance the diagnosis performance. Fig. 9
is likely a graphical representation of a confusion matrix, which can be a 
helpful way to visualize and interpret the model’s performance. This 
shows that the developed model excels in achieving high accuracy levels 
in classifying various eye diseases, providing more reliable diagnoses, 
and detecting subtle signs of eye diseases outcomes.

6.4. Determining eye disease classification system using a diverse classifier

In Fig. 10, Fig. 11, and Fig. 12, a graphical representation illustrates 
the evaluation of the eye disease classification system model across 
various classifier models. When examining the accuracy values depicted 
on the linear activation function, it is evident that the proposed ADHNet 
outperforms models such as LSTM, MobileNet V2, RNN, and DTCN by a 

Fig. 11. Determining Epoch value of the given eye disease classification model when assimilated with classical models regarding (a) Accuracy b) FPR, c) precision 
and d) specificity.
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margin of 7 %, 5 %, 4 %, and 3 %, respectively. In Fig. 10, the x-axis 
represents activation functions including linear, tanh, sigmoid, and 
ReLU, while the y-axis displays diverse performance metrics. By exam
ining different analysis, the consideration of activation function plays 
the crucial role to evaluate the accurate diagnostic performance in eye 
disease. The examination of higher activation function in the developed 
model helps to learn complex features in the retinal images to identify 
the disorder like glaucoma and other related disease. Considering ReLU 
activation function, it effectively performs in learning the edges and 
boundaries of retina images to identify the essential features in the 
developed model. The lower performance in activation function can 
greatly impact the diagnosis treatment that causes loss of eye sight. 
Considering Fig. 11, the epoch-based analysis is initiated with different 
variations like 50, 100, 150, 200 and 250 in terms of diverse perfor
mance metrics. However, the epoch analysis is progressed by analyzing 
the whole dataset during training. In eye disease classification model, 
the increasing number of epoch can significantly enhance the models 
accuracy that helps the medical professionals to cure the disease at the 
right time. If the model shows poor performance, the generalization of 
the model is reduced within the unseen data. This makes the accurate 
diagnosis is not been exactly performed by the clinicians. In this 
experimental validation, the developed method model shows superior 
performance in eye disease classification model. In Fig. 12, the optimizer 
based analysis is performed by evaluating the deep learning models. By 
selecting the optimal features, the developed model can learn the 

intrinsic features to avoid from the occurrence of misclassification is
sues. Higher accurate rate analysis helps the developed model shows 
accurate performance in which the exact classification performance is 
done in the eye disease model. Consequently, the novel eye disease 
classification system model demonstrates superior performance out
comes. This shows that the developed model speeds up the classification 
process, resulting in faster diagnosis and treatment for patients, and 
provides consistent and reproducible results in classifying eye diseases, 
ensuring reliability in diagnoses. Also, it can provide real-time analysis 
of eye images, allowing for immediate decision-making in critical 
situations.

6.5. Determining eye disease segmentation system using a diverse 
classifier

In Fig. 13, and Fig. 14, a graphical representation illustrates the 
evaluation of the eye disease cup and disc segmentation system model 
across various classifier models. The x-axis represents statistical anal
ysis, including best, worst, mean, median, and standard deviation, while 
the y-axis displays diverse performance metrics. Training significant 
amount of data can perform effective and accurate outcomes in the 
developed model. The examination of statistical analysis incurs most 
prominent outcomes by segmenting the accurate locations of the disease 
affected regions. The accurate segmentation of eye disease can greatly 
achieve the effective results of the developed model to minimize the 

Fig. 12. Determining the given eye disease classification model when assimilated with classical models regarding (a) Accuracy b) NPV, c) Precision and 
d) Specificity.
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overfitting issues. When examining the accuracy values depicted on the 
best activation function, it is evident that the proposed TMUnet-NL 
outperforms models such as U-Net, CNN, DeepLab3, and MobileUNet 
by a margin of 7 %, 5 %, 4 %, and 3 %, respectively. Consequently, the 
novel eye disease segmentation system model demonstrates superior 
performance outcomes. This shows that the developed model reduces 
the risk of human errors in the diagnosis process, enhancing accuracy, 
and can extract complex features from images, aiding in the accurate 
classification of eye diseases. Additionally, the developed approach 
enables non-invasive diagnosis of eye diseases through image analysis, 
making the process more patient-friendly.

6.6. Ablation Experiment on the recommended method

Table 5 shows an ablation evaluation of the developed model. This 
evaluation is carried out using accuracy with existing models. Here, the 
accuracy of the recommended framework is 94.15 %, which this more 
than other models. Thus, it proved that the developed model can lead to 
better treatment outcomes and overall improved patient care, and 
enabling comprehensive analysis of large datasets, fostering advance
ments in the field. In analysis, the accuracy of the model could greatly 
depend on the models performance. The developed model ensures to 
classify the eye disease at earlier stage with certain time limit. This 
performance enhancement of the developed model allows providing 
prompt treatment to prevent from vision loss and enhance the quality of 

life. The inaccurate detection are often made by the existing techniques 
to causes health related problems so, the timely and monitoring the 
patients health becomes crucial task for the medical expert. The rec
ommended framework has the ability to treat the disease at the earlier 
stage with the help of medical experts.

6.7. Overall validation of the proposed model using diverse classifiers

In Table 6, the determination of the proposed model in accordance 
with diverse classifier models is depicted. When assimilated over other 
classifiers like LSTM, MobileNet V2, RNN, and DTCN, the given ADHNet 
model for the value over MCC is 18 %, 14 %, 11 %, and 6 % higher. Thus, 
it has proved the efficiency level of the given eye disease classification 
model. The overall analysis is done by considering the standard models 
like LSTM, RNN, MobileNet and DTCN. In this validation, the developed 
model performs 94.1 % that seems to be present the highest value to 
enrich the classification performance. This enhanced performance helps 
to neglect the occurrence of falsely outcomes in the classification. 
Hence, the effective classification can provide the developed model 
more stable and enrich the models generalizability outcome. This proves 
that the developed model has the potential to reduce healthcare costs by 
streamlining the diagnostic process and improving efficiency, and also 
analyzing a large number of eye images efficiently, accommodating 
varying data volumes.

Fig. 13. Determining the given eye disease cup segmentation model when assimilated with classifier models regarding (a) Accuracy b) Dice-coefficient and c) 
jaccard coefficient.
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6.8. State-of-the-art comparison analysis on the developed model

State-of-the-art analysis comparison analysis for the proposed eye 
disease classification model is given in Table 7. Here, the precision of the 
suggested model is 6.52 %, 5.54 %, 4.11 %, and 3.52 % more than 
CANN, PCA, TBUT-based detection model, and Inception-v3. From this 
analysis, the analysis of deep learning model facilitates to allow effective 
treatment from the medical professionals. The early detection of eye 
disease plays the crucial role that helps to prevent from serious 

Fig. 14. Determining the given eye disease disc segmentation model when assimilated with classifier models regarding (a) Accuracy b) Dice-coefficient and c) 
jaccard coefficient.

Table 5 
Ablation Experiment on the Developed Model.

Models Accuracy (%)

GRU [42] 94
LSTM [37] 91
RNN [38] 92.1
CNN [35] 90.5
ANN [41] 91.2
ADHNet 94.15

Table 6 
Overall determination for the proposed eye disease classification model 
compared over existing classifiers.

Measures LSTM 
[37]

RNN 
[38]

Mobilenet 
V2 [39]

DTCN 
[40]

ADHNet

Accuracy 89.38462 87.23077 92.92308 90.61538 94.15385
Recall 89.88095 86.90476 92.85714 90.47619 94.04762
Specificity 89.21162 87.3444 92.94606 90.6639 94.19087
Precision 74.38424 70.5314 82.10526 77.15736 84.94624
FPR 10.78838 12.6556 7.053942 9.3361 5.809129
FNR 10.11905 13.09524 7.142857 9.52381 5.952381
NPV 3.803132 4.96614 2.608696 3.532009 2.155172
FDR 89.21162 87.3444 92.94606 90.6639 94.19087
F1-Score 25.61576 29.4686 17.89474 22.84264 15.05376
MCC 81.40162 77.86667 87.15084 83.28767 89.26554

Table 7 
State-of-the-art analysis comparison for the proposed eye disease classification 
model.

Measures CANN 
[19]

PCA [18] TBUT- 
based 
detection 
model [25]

Inception- 
v3 
[28]

ADHNet

Accuracy 88.60000 89.20000 90.20000 91.05000 94.15385
Specificity 88.42213 89.24180 90.47131 90.98361 94.19087
Precision 88.94325 89.68566 90.82840 91.38100 84.94624
FPR 11.57787 10.75820 9.52869 9.01639 5.809129
FNR 11.23047 10.83984 10.05859 8.88672 5.952381
NPV 88.24131 88.69654 89.55375 90.70480 2.155172
FDR 11.05675 10.31434 9.17160 8.61900 94.19087
F1-Score 88.85630 89.42214 90.38273 91.24694 15.05376
MCC 0.77188 0.78392 0.80397 0.82091 89.26554
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consequences. The performance enhancement of the developed model 
shows the accuracy rate of 94.15. This helps the developed to prevent 
from false observations in the eye disease classification model. This 
proved that the developed model can provide insights into the features 
used for classification, aiding in understanding the decision-making 
process, and can be integrated into telemedicine platforms, enabling 
remote diagnosis and consultation for patients in underserved areas.

6.9. Generalizability of the developed model

The generalizability of the developed model in the eye disease seg
mentation and classification model is shown in Fig. 15. The generaliz
ability of the model is validated by considering different classes like 
ACRIMA, Fundus, and ORIGA to evaluate the model’s efficiency. This 
generalizability helps the model to improve the scalability of the model 
and enhance the model’s effectiveness. It effectively performs in the 
larger data to analyze the complex patterns to strengthen the model 
ability in eye disease segmentation and classification model.

6.10. Experimental analysis of learning curves

The experimental analysis of the learning curve of the developed 
model in terms of training/ validation and accuracy/loss is illustrated in 
Fig. 16. Based on epoch count, the performance of training and 

validation is performed to enrich the model stability in the classification 
model.

6.11. Comparative analysis from recent literature study

The comparative analysis of the developed model is validated with 
recent literature works is tabulated in Table 8. In this comparative 
analysis, the developed model shows efficient and accurate performance 
in which the developed model offers reliable and efficient outcomes in 
eye disease segmentation and classification model. In this developed 
model, the accuracy of the model shows 94.15 % that provide reliable 
performance. This enhanced accuracy of the developed model ensures 
better treatment in eye disease classification model.

6.12. Possibility of validating the approach with medical experts

The clinical application of the deep learning-based ADHNet model 
for eye disease classification is a groundbreaking development in the 
field of ophthalmology. In clinical settings, the medical experts are 
highly involved in the diagnosis and treatment of eye diseases. Its high 
accuracy and efficiency streamline the diagnostic process, allowing for 
quicker assessments and more informed decision-making. By providing 
detailed insights into the characteristics of different eye conditions, the 
developed model supports clinicians in developing personalized treat
ment plans tailored to each patient’s specific needs. This targeted 
approach enhances the model’s precision in identifying specific dis
eases, leading to early diagnosis and timely intervention.

Furthermore, there are several ways to enhance diagnostic accuracy 

Fig. 15. Generalizability of the developed model.

Fig. 16. Experimental analysis in the developed model in terms of (a) loss and (b) accuracy.

Table 8 
Comparative analysis of the developed model with recent state-of-the-art- 
methods.

Terms CANN [19] DenseNet121 [18] Modified 
Inception-v3 
[43]

ADHNet

Accuracy 88.20 89.47 90.07 94.15385
Specificity 88.44 89.25 89.92 94.19087
Precision 88.55 89.45 90.09 84.94624
FPR 11.56 10.75 10.08 5.809129
FNR 12.04 10.32 9.79 5.952381
NPV 87.85 89.49 90.04 2.155172
FDR 11.45 10.55 9.91 94.19087
F1-Score 88.25 89.56 90.15 15.05376
MCC 76.40 78.93 80.13 89.26554
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and improve patient outcomes in the field of ophthalmology. The 
medical experts needs to conduct the routine eye exam helps to detect 
variety of severe conditions like pupil size, cancers, giant cell arteritis, 
and heart disease. In medical sector, the RetinaLyze is one of the soft
ware screening applications, in which the medical experts can perform 
the signs of pathology in a safety manner.

6.13. Discussion

The solutions given by the research question are described below. 
Focusing on RQ.1, the eye disease classification is done by the ADHNet 
model employed by the combination of VGG16 and DTCN to provide 
reliable performance. The consideration of VGG16 model provides high 
accuracy to boostup the classification performance. With different scale 
variations, the developed ADHNet model offers robust to image varia
tions. Capturing the complex patterns in the images leads to better 
classification performance. So, the robust classification performance 
helps the model to provide appropriate treatment from the medical 
professionals.

In RQ2, the segmentation is conducted through the TMUnet-NL 
model. We know that, the primary advantage of MobileNet and UNet 
model relies on providing accurate segmentation for complex bound
aries and provides faster processing time by considering high and low 
level features. By considering these advantages, the MobileNet and Unet 
models are integrated to form an effective TMUnet-NL model. Consid
ering RQ3, the focusing of retinal images in the implementation process 
can meticulously enhance the accuracy of the model. The consideration 
of developing new deep learning model can effectively work well in 
detecting and classifying the eye disease. Development of these model 
helps to solve overfitting and data imbalance issues whereas it step to
wards to reach the higher accuracy outcome. Selecting essential features 
can strengthen the developed model to show better accurate perfor
mance. Overall the accuracy of the developed model shows 94.1 %.

Issues and limitations (such as overfitting/ underfitting) in the 
training model: While training the model, overfitting and underfitting 
issues occur when it is not effectively dealing with data quality issues 
like noise, data imbalance, data leakage, and insufficient training data. 
In general, the overfitting issues occur when the model learns the 
training data too closely to provide poor performance on new data. 
Underfitting issues means when the model is too simple and failed to 
capture the significant patterns in the data. The emergence of overfitting 
and underfitting issues impacts the model’s ability to generalize the 
unseen data. In this research work, issues like overfitting and under
fitting are rectified by training the larger amount of data with the ratio of 
75 % (training) and 25 % (testing). However, the implementation of the 
result has been evaluated based on the models generalizability that helps 
to estimate different classes to minimize the overfitting and underfitting 
issues in the developed model. Monitoring and managing the validation 
loss helps the developed model to find the optimal value in order to 
capture the complex patterns of unseen data. Selecting the most 
appropriate features helps to eradicate unnecessary features that might 
lead to decrease the overfitting issues.

7. Conclusion

The research paper has developed a deep learning-based eye disease 
classification system for detecting Glaucoma. It enabled automated and 
efficient diagnosis of eye diseases, reducing the reliance on manual 
interpretation and potentially decreasing human error. It first collected 
relevant images and given to Trans-MobileUnet, which integrated with a 
loss function to segment the optic cup and disc. The ADHNet was then 
designed for eye disease classification, combining VGG16′s feature 
extraction capabilities with DTCN’s classification expertise. The ADH
Net outperformed traditional models such as LSTM, MobileNet V2, RNN, 
and DTCN by 4 %, 12 %, 14 %, and 3 % in precision values on the linear 
activation function. The system proved highly effective in delivering 

accurate and reliable predictions in the field of eye disease classification 
using medical images. One key advantage of the developed model was 
its high accuracy in identifying various eye diseases from medical im
ages. This accuracy can lead to early detection and timely treatment, 
potentially improving patient outcomes. Also, it could efficiently 
analyze large and complex datasets, making them well-suited for 
detecting subtle patterns in eye images that may indicate different dis
eases. Additionally, the developed model had the potential to automate 
the diagnosis process, saving time for healthcare professionals and 
increasing the speed of patient care. However, there are also some dis
advantages to be aware of. The designed approach required a substantial 
amount of labelled data for training, which can be challenging and time- 
consuming to acquire in the medical field. Moreover, the interpretability 
of the model could be limited, making it difficult to understand the 
reasoning behind the model’s predictions. Looking into the future, the 
scope of developed eye disease classification using deep learning is 
promising. Advancements in deep learning techniques, such as transfer 
learning and explainable AI, can address current limitations that aid to 
improve the model’s performance and interpretability. Moreover, the 
integration of multimodal data sources, such as genetic information or 
patient history, could further improve the accuracy and personalized 
treatment of developed eye disease classification. Future extensions will 
be enhanced by providing the substantial improvements by incorpo
rating the contrastive learning and vision transformer models [43]. 
Additionally, developing algorithms can effectively handle rare diseases 
and prevent bias in predictions that will be crucial for the accuracy of 
the models. The consideration of data augmentation technique in eye 
disease segmentation and classification model will be recommended in 
the upcoming works.
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